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SUMMARY 

An improved numerical technique for complex shaped non-planar three-

dimensional crack growth simulations is proposed. This technique couples the 

adaptive re-meshing method used during crack growth simulation in the FE- 

based fracture mechanics code Zencrack with mesh relaxation using radial 

basis functions. This allows the uninterrupted simulation of crack propagation 

in engineering structures where the component geometries and local loading 

conditions may develop complex 3D crack configurations.  

Collocation with radial basis functions (RBFs) is an effective methodology for 

the interpolation of arbitrary scalar and vector fields defined over scattered 

datasets. By defining a mesh displacement field over a volumetric domain, the 

RBF collocation approach may be used to smoothly map a user-defined 

displacement of elements onto the entire domain, thereby “relaxing” the mesh 

around the imposed displacements. This mesh deformation leads, in most 

cases, to significantly improved element quality in comparison to traditional 

mesh-relaxation approaches such as Laplacian relaxation. In particular, 

elements that lie close to the source of a large displacement can be expected to 

exhibit significantly improved characteristics (such as aspect ratio and skew) in 

comparison to traditional approaches. 

The application of RBF deformation to fracture-tracking problems introduces 

many additional complexities that require novel and creative solutions. The 

most significant of these is the large difference in length scales between the 

imposed deformations - which are of element scale, and the constraints at the 

domain boundaries - which are of problem-scale. These differences in length 

scales make the problem unsuitable for use with compactly supported 

collocation methods. To retain a computationally efficient interpolation which 

is scalable to large problem sizes, a new method for RBF collocation has been 
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developed which is based on large numbers of overlapping local collocation 

systems, using the underlying elemental structure as a framework. By linking 

together these overlapping local collocation systems a sparse global matrix 

may be formed, which can be solved to obtain the displacement at each node 

within the relaxation domain. 

For crack propagation simulation it is desirable to allow the mesh to move 

freely within the domain, as defined by the imposed displacements around the 

crack-tip, and to constrain the motion of surface and edge nodes such that they 

remain within their pre-existing geometric surfaces. In this work we describe 

surface-constraint methods which are suitable for use with complex 3D 

geometries where the mesh relaxation is performed using globally or locally 

supported RBF collocation systems. 
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1:  Introduction 

The simulation of crack propagation using the Finite Element Method (FEM) 

introduces a number of significant numerical challenges, owing to the large 

concentration of stresses that are present on approach to the crack front; a line-

singularity which advances though the solution domain based on the local 

stress intensity factor. The mesh must be refined significantly on approach to 

the crack front in order to capture the rapid change in stresses. Further, in order 

to model the propagation of the crack-front, updated meshes must be 

constructed as the crack advances in the domain. This means that careful 

treatment of the elements surrounding the crack region is required; the 

surrounding mesh must be “relaxed” around the crack region in order to retain 

element quality throughout the domain. The re-meshing process which needs to 

be undertaken can be considered as: 

  Advance the nodes on the crack front to the required new positions in 

accordance with the fracture mechanics conditions along the crack, the 

material data and the load history. 

  Calculate a set of movements (i.e. deformations or displacements) to 

apply to the remaining mesh nodes to generate a full set of updated 

node coordinates for the advanced crack position, ensuring that surface, 

edge and corner information is retained. 

  

 

Figure 1: Example of typical meshes from planar crack growth at a hole feature. 

(a) initial crack mesh, (b) final crack mesh, (c) calculated crack front positions as 

the crack advances through the domain. 

(a) (b) 

(c) 
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Traditional mesh relaxation techniques, such as local Laplacian relaxation 

technique (see for example Jones (1974)), rely on analysing the quality of 

individual elements and adjusting nodal positions in an attempt to retain well-

formed elements. An alternative approach can be found in the form of radial 

basis function (RBF) collocation methods. Rather than moving nodes based on 

the properties of individual elements, RBF collocation methods allow for a 

smooth mapping of a deformation, which is defined at a subset of nodes, across 

the entire solution domain. In this way, the RBF collocation approach can be 

seen as somewhat independent from the underlying computational mesh; the 

deformation is computed as a smooth and continuous function defined over the 

entire solution domain, and the motion of nodes within the mesh is computed 

by reconstructing the value of this interpolation function at each nodal location. 

The strength of the RBF collocation approach for such mesh deformation 

problems has been demonstrated by Bos (2010). In this work, RBF collocation 

is used to relax a computational mesh for the CFD simulation of flapping wing 

flight. In this case the periodic motion of the wings represents a source of 

deformation – analogous to the motion of the crack-front in the present work, 

and the RBF collocation approach is used to relax the surrounding 

computational mesh around this predefined wing motion. The performance of 

the RBF method was compared to a number of traditional, element-analysis 

based relaxation techniques, and is found to offer significantly improved mesh 

quality – particularly in the case of large deformations with rotating and 

twisting wing motion. 

The simulation of crack propagation introduces additional challenges for mesh 

relaxation, primarily related to the presence of complex geometries and the 

necessity to appropriately constrain the motion of surface and edge nodes. Such 

nodes must be free to move in order to maintain element quality, but must be 

constrained to their respective surface or edge in order to retain the shape of the 

domain geometry. This presents an additional challenge for relaxation with 

RBF collocation methods, as the length scale of the deformation source (which 

is of element-scale) may be orders of magnitude smaller than the length scale 

of the domain. Such issues are not present in the simulation of insect-wing 

motion, as described by Bos, where the magnitude of mesh motion simply 

decays to zero in the open boundaries of the far-field. 

2:  Globally supported RBF collocation 

The RBF collocation formulation was originally formulated by Hardy (1971), 

for the smooth interpolation of scattered pointwise datasets. The use of RBF 

methods for such purposes gained significant support following a review by 

Franke (1982), which compared all available methods for scattered data 

interpolation, concluding that RBF collocation offered the most accurate and 

stable results. 
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A radial basis function depends upon the separation distances of a set of 

functional centres, known as trial points, and exhibits spherical symmetry 

around these centres. There are several commonly used radial basis functions, 

however in this work we will focus on the popular multiquadric function, with 

1m : 

     222
m

crr         (1) 

The multiquadric RBF is a conditionally positive definite function of order m , 

which requires the addition of a polynomial term of order  1m , together 

with a homogeneous constraint condition, in order to obtain an invertible 

interpolation matrix. By choosing 1m , the polynomial term reduces to the 

addition of a constant. The c  term is known as the shape parameter, and 

defines the relative flatness of the basis functions, with larger values of c
representing flatter basis functions. In practice, the tuning of this parameter can 

effect the quality of the interpolation obtained. In general, higher values of c
lead to the more accurate interpolation of smooth data, at the cost of greater 

numerical ill-conditioning in the resulting collocation matrices (see, for 

example, Kansa (1992), Fornberg and Zuev (2007)). 

For a series of scattered data, ju , located at N  quasi-randomly trial locations 

j , the RBF approximation to the continuous solution field,  xu , is given by: 
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with NP  being the total number of terms in the polynomial (equal to one for 

the  1m  case considered in this work). 

By enforcing equation (2) at N  distinct locations jx , coinciding with the 

functional centres j , a symmetric and positive-definite collocation system can 

be formed to determine the functional weights j : 
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The globally supported basis functions (1) lead to a fully populated linear 

system, with each functional centre influencing the solution construction at 

every jx . While this approach allows for excellent convergence rates, it results 

in a computational cost of, at best,  2NO  , making the approach 

computationally inefficient for application to large datasets. Moreover, as the 

size of the dataset increases, the numerical conditioning of the collocation 

matrix worsens, particularly in the case of flat basis functions, i.e. large values 

of the shape parameter c  - see Schaback (1993) for more detail. 

To mitigate the computational cost and numerical conditioning issues, 

Wendland (1995) and Wu (1995) developed a series of compactly supported 

radial basis functions. These CSRBF functions are non-zero only within a 

locally supported radius. In this way, the reconstruction of the solution field 

 xu  is generated only from functional centres in the immediate vicinity of the 

reconstruction location x , resulting in a sparsely-populated linear system 

which can be scaled to arbitrarily-large datasets. 

Compact support RBF methods are commonly used for a number of 

applications, most notably for the reconstruction of complex geometric 

surfaces, for example in computer graphics applications. However, they are not 

well suited to mesh relaxation in the case of crack propagation. In this case the 

source of the deformation; i.e. the advancement of the crack-front through the 

domain, can be expected to be separated from the surface nodes, at which 

constraint conditions are required, by a distance of the order of the problem 

scale. Therefore, in order to link the nodes at the crack-front to those at the 

geometric surface, the support radius must be of the same order as the size of 

the domain. In this way a fully-populated collocation matrix is produced, 

bringing with it the aforementioned issues of scalability and numerical 

conditioning. 

3:  Local RBF finite collocation approach 

An alternative to compactly-supported RBF collocation methods can be found 

by dividing the solution domain into a series of small, highly overlapping RBF 

collocation systems. Over each sub-domain an RBF collocation is performed, 

thereby providing an expression for the value of the interpolation function in 

terms of its value at the surrounding nodes. By assembling these 

reconstructions in an appropriate manner, a sparse global system is formed that 

can be solved to obtain the value of the solution field at each internal node. In 

this way the method is scalable to large problem sizes; although the individual 

local collocation systems are themselves fully populated, they are sufficiently 

small that they can be solved efficiently. Such local RBF approaches retain 

much of the flexibility of global approaches, without suffering from the 

computational cost and numerical conditioning issues as the dataset size grows. 
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Local RBF collocation approaches offer the flexibility to not only perform 

interpolation, but also to solve arbitrary PDEs over the solution domain. Such 

approaches have been used to formulate meshless finite difference methods; 

see Wright and Fornberg (2007), Divo and Kassab (2007), Stevens et. al 

(2009). In this RBF-FD approach the radial basis functions replicate the role of 

polynomial interpolants in traditional finite difference methods, allowing the 

value of the PDE to be reconstructed at the local system centrepoint. By 

solving an appropriate PDE, rather than performing a simple interpolation, it is 

possible to further smooth the motion of nodes during the mesh relaxation 

process. Moreover, a well-posed PDE with appropriate boundary conditions 

has a unique solution, whereas a pure interpolation is potentially subject to 

unknown behaviour in the regions between collocation centres. 

In this work we propose to solve the steady heat equation (5) over the entire 

solution domain, using a local RBF collocation method. In this way each of the 

three displacement components, as enforced at each of the crack-tip positions 

to describe the advancement of the crack through the mesh, act as a source of 

heat. This heat is then smoothly diffused among surrounding mesh nodes, as 

defined by the solution of the heat equation. Any other fixed nodes, such as 

those at geometric corners, act as fixed-temperature nodes; i.e. Dirichlet 

boundary conditions (6). At all remaining surface nodes an adiabatic condition 

is enforced (7).  
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While a meshless finite difference method may be suitable to solve the 

proposed formulation, we use instead the related “finite collocation” approach, 

as described by Stevens et. al (2012). In the finite collocation approach, as with 

the RBF-FD approach described above, local RBF collocation systems are 

formed around each internal node by connecting them to neighbouring mesh-

nodes. However, in this case the RBF interpolants do themselves satisfy the 

governing PDE and boundary operators, and the global assembly is obtained by 

simply reconstructing the value of the interpolated function (i.e. the nodal 

displacement) at the local system centrepoint, rather than by reconstructing the 

value of the PDE as in RBF-FD. In Stevens et. al (2012) it is demonstrated that, 

for a wide range of convection-diffusion problems, the finite collocation 

approach offers superior convergence rates and, more importantly in the 

context of this work, better stability to variations in basis function flatness, in 

comparison to RBF-FD methods on equivalent stencils. 
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To form the set of neighbour nodes for a given internal focus-node, we first 

identify the set of elements which include the focus node, and add to the stencil 

all nodes that are contained by these elements. In this way, 27 mesh-nodes are 

included in each RBF collocation system. In addition, the centres of the set of 

elements are added, and at these locations the governing PDE, i.e. the heat 

equation, is enforced (see Figure 2). In the case that a stencil includes nodes 

located on the domain boundary, the appropriate boundary condition is 

enforced instead. Note that at the central node of the stencil the governing 

partial differential operator is enforced, in contrast to all other mesh-nodes, 

where the displacement value is enforced. This is to allow the displacement 

value to be reconstructed at this location later in the solution procedure, in 

order to form the sparse global assembly.  

 
Figure 2: Schematic representation of stencils for finite collocation. Blue spheres 

represent solution centres, at which the displacement is collocated. Red spheres 

represent collocation of the governing partial differential operator. 

The enforcement of arbitrary partial differential operators, specifically the 

governing PDE and adiabatic boundary conditions, is obtained by forming an 

Hermitian RBF collocation system. The Hermitian RBF collocation 

formulation was formulated by Fasshauer (1997), and extends the basic RBF 

formulation (2) by including the influence of the partial differential operators 

within the solution construction. 

We define the governing partial differential operator, L , over the domain   

as 
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and define the boundary operator, B , over the domain boundary  either as 

Dirichlet type 

     3,2,1 ixfuuB iii      (9) 

or as Neumann type 
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where jn  represents the unit outward surface normal at x . 

In the case of adiabatic boundary conditions, the value of the boundary 

operator,  xf i  will be zero, representing no flux of “heat” across the 

boundary. In the case of Dirichlet boundaries, the value of  xf i  will represent 

the enforced displacement at that location. 

With this definition, the Hermitian RBF formula for each component of 

displacement, iu , may be written as: 
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Where N1 represents the number of solution centres, N2 represents the number 

of boundary centres, and N3 represents the number of PDE centres within the 

collocation stencil. Since we consider the multiquadric RBF function with 

 1m , the polynomial constrain reduces to the addition of a constant term. 

This formula represents three independent reconstructions for the three 

components of displacement, which we model as obeying the heat equation. By 

determining the values of 
ji , the reconstruction formula may be used to 

obtain the displacement at any location within the domain of the RBF 

collocation. 

To obtain the collocation matrix we reconstruct the value of iu  at solution 

centres, reconstruct  iuB  at boundary centres, and reconstruct  iuL  at PDE 

centres, using equation (11). This leads to the following system of equations: 
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In the above matrix equation, the operators with subscript   are applied to the 

trial points (i.e. functional centres), and the operators with subscript x are 

applied to the test points (i.e. locations at which (11) is enforced to generate the 

matrix system (12)). This linear system is symmetric, and was shown by Wu 

(1998) to be non-singular so long as no two collocation points sharing a 

linearly dependent operator are placed at the same location. 

In our approach, we form an Hermitian collocation system of the form (12) for 

each of the N  local stencils, i.e. 
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Here  kA  represents the collocation matrix for collocation system k , 
 k

id  

represents the data-vector for the 
thi  displacement component in system k , and  

 k

i  represents the corresponding system weights. Note that, at the solution 

centres, represented by the first row-block of the matrix system as set out in 

equation (12), the value of the displacements iju  is presently unknown, and 

will be determined only after solution of the following sparse global assembly. 

To obtain the sparse global matrix, we reconstruct the three solution 

components, as defined by equation (11), at the system centrepoint  k

cx  (i.e. at 

the mesh-node around which local system k  has been formed). Writing this 

reconstruction in vector form we have 
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Where  )()( k
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k xH  is identified as a reconstruction vector for system k  at its 

centrepoint  k

cx . By rearranging this formula, we can obtain the value of iu  at 
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cx  in terms of the data-vector 
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Here          1)()( 
 kk

c

kk

c

k AxHxW  is a stencil weights vector, which expresses 

the value of the solution field iu  at the system centrepoint, in terms of the 

entries in the data vector 
 k

id . The data vector 
 k

id  contains the unknown 

displacement values at surrounding nodes, therefore, by performing the 

reconstruction at every solution centre within the domain, a series of N

simultaneous equations are formed for the N  unknown values of iu  at the 

system centrepoints. The solution of this sparse linear system therefore 

provides the displacement at each of the N internal mesh nodes. 

Once the values of the displacements iu  are obtained at the internal mesh 

nodes, and these values have been fed back into the local system data vectors 
 k

id , the displacement value at any location within the solution domain may be 

obtained by forming a solution weights vector 
  xW k

for any x  within the 

support domain of system k , and multiplying with the associated data-vector 
 k

id . In this way, the displacement at the surface nodes may be obtained by 

reconstructing from any number of RBF systems which include it in their 

stencil. 

4:  Relaxation procedure and surface / edge constraint 

The relaxation procedure is driven by the movement of the crack-front through 

the domain, as determined by the crack growth integration process from the 

previous FE iteration. The nodes of the elements immediately surrounding the 

crack-front, referred to as crack-block nodes (see section 5), have a non-zero 

displacement applied, allowing the “crack-block elements” to move with the 

motion of the crack-front. The relaxation procedure therefore aims to translate 

these enforced displacements smoothly throughout the domain, in order to 

retain a high-quality mesh. 

Since the crack-front can be expected to intersect the domain boundaries at one 

or more locations, it is essential that nodes on the surfaces and edges of the 

domain are allowed to move. In order to allow the nodes on the domain 

surfaces and edges to be properly constrained to their respective geometries, 

the relaxation procedure follows a three-stage process: The first stage predicts 

the motion of edge nodes and fixes their position onto the domain edges, the 

second stage predicts the motion of surface nodes and defines their motion over 

their respective surfaces, and the final stage predicts the resulting motion of all 

nodes internal to the domain. 

In the first stage of the procedure only the domain corners are fixed, with 

adiabatic boundary conditions applied over all remaining edge and surface 

nodes. The RBF finite collocation procedure is then followed, as described in 

Section 3, allowing the predicted displacement to be computed at each edge 
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node within the domain. The deformation field resulting from the RBF 

procedure will inevitably predict some out-of-edge displacement for edge 

nodes, which must be mapped back onto the edge at an appropriate location. 

By dividing each geometric edge into line-segments, based on data from the 

original uncracked mesh, it is possible to identify a unique location on the edge 

which is closest to the displaced edge node position. The edge node is then 

mapped to this position, becoming a fixed displacement constraint for the next 

iteration. In this way, the predicted motion in the direction of the edge is 

respected, while constraining the motion to the correct geometry; edge nodes 

are allowed to “slide” along their respective edges, but are not permitted to 

leave the edge. 

At the second stage of the procedure, the edge nodes have already been 

assigned a displacement, and therefore become fixed-displacement Dirichlet 

boundary conditions, together with the assigned displacement at the crack-

block nodes (which remains unchanged from the previous stage). The 

remaining non-edge surface nodes are again assigned an adiabatic boundary 

condition, which allows their motion to be predicted by the RBF relaxation 

procedure. 

In order to properly constrain the motion of surface nodes in the case of 

complex geometric surfaces, each surface is tessellated with a number of 

triangular facets. In the case of hexahedral elements, as utilised by the 

Zencrack software (see Section 5), four triangular facets are created for each 

quadrilateral element face which lies on the domain surface, using the centre of 

the face as a guide. The displacement at the surface nodes, as predicted by this 

second RBF deformation, will typically contain some out-of-surface 

component. To compensate for this, the surface nodes are projected along a 

line, as defined by their surface-normal at the previous iteration. The triangular 

facets which are close to the node are then examined for interception with this 

projection line. Because the surface has been discretised by a finite number of 

triangular planes, the interception location is unique. The surface nodes are 

then constrained to this location on the surface ready for the next and final 

iteration. As was the case with the edge nodes, this procedure allows surface 

nodes to slide along their respective surfaces in a natural fashion.  

It is important to note that, for every crack front, a trailing crack surface is 

generated as the crack front moves through the domain. This crack surface is 

treated in precisely the same way as for the original geometric surfaces, being 

tessellated with surface facets. Nodes which must be constrained to the crack-

surface are then mapped onto it in exactly the same fashion, and are therefore 

able to slide over the crack surface as needed. 

The third and final stage of the relaxation procedure uses the displacement of 

surface and edge nodes as computed in the previous two stages, along with the 
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enforced displacements at the crack-block nodes, in order to predict the motion 

of internal nodes – thereby relaxing the entire mesh around the motion of the 

crack-front. At this stage there are no adiabatic boundary conditions, since all 

surface nodes have been assigned an applied displacement in previous stages.  

The three-stage relaxation procedure allows the element quality to be 

maintained on approach to the domain edges and boundaries. In principle it is 

be possible to relax all nodes; surface edge and internal, based on the result of 

the first stage (i.e. by fixing only the corner and crack front nodes). However, 

in the case that out-of-plane deformations are predicted that are of a size 

approaching the element scale, elements immediately adjacent to surfaces or 

edges would become highly elongated or even inverted. Such an approach 

therefore would be suitable only for very small movements of the crack front. 

By adopting the three-stage procedure, i.e. by moving edge, surface and 

internal nodes separately, the relaxation is effective for much larger 

displacements of the crack-front, and therefore significantly more robust. 

5:  Zencrack: An FEA tool for 3D crack analysis on complex geometries 

The proposed new RBF relaxation technique has been implemented in the 

Zencrack fracture mechanics package. Zencrack allows analysis of one-off 

crack positions and general 3D non-planar crack growth under fatigue and/or 

time dependent crack growth loading conditions. The Zencrack analysis 

procedure is summarised in Figure 3. The mesh relaxation technique occurs 

during the re-meshing stage as the crack front advances through the model.  

 

Figure 3: Flowchart summarising analysis procedure and use of mesh relaxation. 

The re-meshing procedure in Zencrack adopts the use of “crack-blocks” to 

model the details at the crack front. One or more crack-blocks replace elements 
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of a user supplied uncracked mesh. The meshing process for each crack front 

advancement has three stages, as shown in Figure 3. First the new crack front 

position is identified. This is a consequence of the crack growth integration 

scheme operating on the results of f.e. analysis of the previous crack position in 

conjunction with a loading history and crack growth law. The updated crack 

position is described by a series of nodes in space. The crack-blocks are then 

oriented around the new crack front position. The nodes outside the crack-

blocks are then moved to appropriate new positions to define the revised mesh 

outside the crack-blocks. This final calculation is where mesh relaxation takes 

place. An example of the procedure (using the original Laplacian method) is 

shown in Figure 4 to Figure 7. 

  

Figure 4: Deformed plots showing crack positions after growth of starter cracks at 

the hole (a) with mesh shown (b) with mesh removed to show the crack paths 

more clearly 

Figure 4 shows the final crack positions for two cracks growing from a hole in 

a circular shaft test specimen under cyclic tension and torsion loading. In 

Figure 5(a) the uncracked mesh is shown with the target elements for 

replacement by crack-blocks highlighted in yellow. Figure 5(b) shows the 

initial cracked mesh with the crack-blocks in place. Figure 5(c) and 5(d) show 

two advanced crack positions during the analysis. Clearly, the elements 

surrounding the crack-blocks in each mesh have different distributions as the 

mesh has moved to accommodate the crack growth. This movement is the 

result of the mesh relaxation process. Figure 6 shows a cut-away at analysis 

step 26 with crack profiles superimposed. This demonstrates how the crack-

blocks have been oriented around the current crack position with mesh 

relaxation having been applied to the surrounding nodes. Once the crack-block 

(a) (b) 
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orientations are calculated, the nodes of the crack-blocks become “fixed nodes” 

in terms of the mesh relaxation process which follows i.e. they are not moved 

during mesh relaxation. 

  

  

Figure 5: Stages of the growth analysis with the crack-block region highlighted in 

yellow (a) uncracked mesh (b) initial cracked mesh (c) cracked mesh at step 26 

(d) cracked mesh at step 46 

 

Figure 6: Cut-away at step 26 showing the way the crack-blocks are oriented 

around the current crack front with crack face nodes fitted to the crack path 

(a) (b) 

(c) (d) 
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6:  Examples of crack propagation using RBF relaxation 

Figure 7 shows the propagation of a simple, linearly-advancing crack front. 

The mesh includes biasing of elements to further compare the RBF and 

Laplacian procedures. The mesh resulting from RBF relaxation is shown in 

Figure 7(a), and that resulting from Laplacian relaxation is shown in Figure 

7(b). In this case there is little relaxation of the mesh required around the 

crack-front; however, the RBF relaxation better retains the user-defined 

element biasing that is present in the initial mesh. By contrast, the Laplacian 

method attempts to normalise elements that are further from the crack-front. By 

computing a global displacement field, rather than adjusting individual 

elements, mesh features present in the original uncracked mesh are better 

retained during the crack advancement procedure. 

 

 
(a) RBF relaxation 

 
(b) Laplace relaxation 

 

Figure 7: Advancement of a simple linear crack with Laplacian and RBF 

relaxation (exaggerated deformation scale).  

The advancement of a crack generated within a plate with a hole is shown in 

Figure 8. The crack starts next to a curved surface, requiring careful constraint 

of nodes on the curved surface and edges. As the crack front advances into the 

domain, the mesh is relaxed around the crack-block elements. Elements that lie 

adjacent to the trailing crack surface are fitted to their respective sides of the 

crack. 
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(a) Initial crack-configuration 

 
(b) 14 iterations 

 

(c) 27 iterations 

 

(d) 36 iterations 
 

Figure 8: Advancement of a crack through a plate with a circular hole.  

The relatively coarse mesh in this example acts as a “stress test” for the 

relaxation algorithm. Here the RBF method can be seen to improve on the 

Laplace relaxation approach. Figure 9 shows the 36
th

 iteration of the Zencrack 

crack-advancement process, using RBF and Laplace mesh relaxation 

respectively. Using the Laplace approach it is necessary to significantly reduce 

the size of the crack-blocks in order to avoid inverting the elements 

surrounding the crack-front, which is unnecessary with the RBF relaxation at 

this stage in the simulation. In addition, the Laplace method once again 

removes the mesh-grading that is present in the z-direction within the original 

mesh; elements close to the crack-front have the grading properly enforced, but 

elements further away become almost uniform. In the RBF relaxation the 

grading is properly maintained. 
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(a) RBF relaxation 

 
(b) Laplace relaxation 

 

Figure 9: Plate with a circular hole: Cutaway showing element quality over the 

crack-surface, at 36 iterations. 

The relaxation may be applied to complex, curved geometries that include 

multiple fractures. Figure 10 shows the RBF relaxation algorithm at work 

during the simulation of two fractures propagating through a square section 

with a swept, circular cut. To account for the large difference in the size of the 

elements at either end of the two crack-fronts, the crack-block elements at the 

lower surface expand as the crack-front advances, with the surrounding 

elements relaxed around them. 

 

 
(a) Top-view 
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(b) bottom view 

 
Figure 10: Two cracks growing through a domain with curved cut-out. 

 

7:  Conclusions 

A novel procedure has been described to allow the relaxation of a finite 

element mesh during the simulation of crack propagation in complex 3D 

models. The proposed method is based on the solution of the steady heat 

equation across the entire solution domain, using a numerical technique based 

on overlapping local radial basis function collocation systems. Unlike other 

full-domain RBF collocation approaches, the computational cost of the 

proposed method scales linearly with problem size, making it suitable for 

application to large models. 

The method is successfully able to relax the finite element mesh around the 

moving crack-front. By defining a smooth deformation field propagating from 

the crack tip, a good element quality may be maintained throughout the mesh. 

Compared to the Laplace relaxation method, user-defined features in the 

original mesh such as grading of aspect-ratio are better maintained using the 

RBF relaxation. 
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