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Overview 

• Why use fracture mechanics for fatigue life 

assessment 

 

• Processes involved in fatigue 

 

• Design approaches 

 

• Examples 
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Fatigue Process 

• The fatigue process is formed of two phases: 

– Crack initiation 

– Crack propagation 

• Initiation occurs at the grain boundary level 

until a crack is large enough to form a 

geometric stress concentration 

• A local plastic zone is then formed ahead of 

the crack as it propagates through the 

structure 
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Design Approaches 

• Total-Life Design 
– Design life span 

– Durability, etc. 

• Defect-Tolerant Design 
– Advancement in Material Science 

– Manufacturing 

 

• Example: 
– U.S.A.F. Engine Rotor Life Extension (ERLE) program 

– “The overall ERLE objective is to safely double the life 
of fracture-critical turbine engine components, 
resulting in projected cost avoidances in excess of 
$1B through 2020 when fully implemented.”  
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http://www.afmc.af.mil/news/story.asp?id=123138571 

http://www.saffm.hq.af.mil/shared/media/document/AFD-070221-113.pdf 
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Fatigue – Initiation / Nucleation 

• Depends on grain size, grain boundaries 

• Micron size crack growth rate law is still 

‘work in progress’  

• Not suited to fracture mechanics techniques 

yet 

• Classical fatigue analysis used to evaluate 

this phase of life 

5 
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Use of Finite Element methods 

• Finite element methods greatly help both 

crack initiation and crack growth phases: 

– Multi-axial loads 

– Thermo mechanical 

– Creep fatigue 

– Welded joints 

– Residual stress effects 

– Random and multi-spectral loading effects 

– Stresses and other results through the load history 

– Effect of variability of load and material 
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Use of Finite Element methods 

• Simulation of different scenarios 

• Replace spreadsheet fatigue calculations 

• Replace expensive prototype testing 

• Produce a durable design 

• Identify onset of failure from different 

loading 

• Design of new materials 
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Fatigue – Propagation 

• Fracture mechanics 
can provide 
post-initiation modelling: 
– Crack growth paths 

– Crack shape development 

• Fracture mechanics 
approach has: 
– Similarities with traditional 

fatigue because the underlying 
load scenario has not changed 
• Combine stress solution(s) for 

“base” load case(s) with load 
history(ies) and material fatigue data 
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Animations on this slide are not included in the pdf version 
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Fatigue – Propagation 

Crack growth integration 
Cycle-by-cycle or finite evaluations 

of fracture parameters. 

Crack growth data, threshold effects. 

Load spectrum, flight cycles, general 

thermo-mechanical cycles. 

Topology issues 
Initial crack. 

Mixed mode. 

Non-planar growth. 

Crack shape development. 

Multiple cracks. 

Fracture mechanics parameters 
K, G, J. 

Closed form or 

numerical evaluation (BEM, FEM). 

Crack 

propagation 
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Fatigue – Propagation 

• Explicit inclusion of crack(s) in the analysis 

– Fracture mechanics approach quantifies 

conditions local to defined crack front(s) 

– Usually described in terms of stress intensity 

factors, Ki, Kii and Kiii 

– Energy release rate and j-integral can also be 

used 
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Mode I 
opening 

Mode II 
sliding 

Mode III 
tearing 
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• A “linear elastic fracture mechanics” 
approach is most often used for crack 
propagation 

 
– Loading & history 

• Calculate Ki range, DK 

– Crack growth law 
• Relates DK to the growth 

rate, da/dn 

– Advance the crack by da 
over the next dn cycles 

P 

P 

Fatigue – Propagation 
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Fatigue – Propagation 

• Evaluation of K is critical in this process 

– Handbook methods provide limited solutions 

 

 

 

– Finite element analysis provides a general 

solution capability  
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Animations on this slide are not included in the pdf version 
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Fatigue – Propagation 

• Aims include: 

– Determine remaining life of existing defects 

– Forensic investigation of failures 

– Determine inspection / maintenance schedules 

– Allow continued safe operation with known 

defect sizes 
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Example: Post failure investigation 

• Roller bearings installed during 
refurbishment in 1996 had split 
in two by 2002 
– Replace all 148 bearings 

• Considerable implications: 
– bridge over a mile long, more 

than 100 feet high, weighing over 
58,000 tons 

– carries 160,000+ vehicles per day 
– 35 bridge piers 
– 320km of scaffolding required 
– £52 million for all repair work 

14 

Ref: http://news.bbc.co.uk/1/hi/england/2912343.stm 
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Example: Post failure investigation 

• The bearings allow for 
expansion and 
contraction due to 
changes in temperature 
and also to allow for 
movement of the viaduct 
as it carries traffic 

• Analysis undertaken to 
investigate possible failure 
modes and cracking 
mechanisms 

 Ref: http://www.highways.gov.uk/roads/projects/4858.aspx 
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Cracked bridge roller supports 

• Analysis includes: 
– contact between the roller and the surrounding 

plates and also between the crack faces where 
there is potential for mode II and mode III effects 

– weight of the bridge deck 

– a full roll cycle representing 
deck expansion & contraction 

• The analysis was able to produce: 
– crack growth profiles matching 

those seen in failed rollers 

– predicted failure time 
consistent with the actual 
failure time of the rollers 
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Cracked bridge roller supports 

The model shown has a single defect. 

The “real” analysis has multiple defects, starting as 

corner cracks, at the contact positions with the plates. 

Animations on this slide are not included in the pdf version 
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Cracked bridge roller supports 

• Analysis for “roll-only” 
load case – no effect 
of contact against 
end guide plates – so 
the crack grows in-
plane 

• Initial 10mm corner 
cracks join to form a 
single through crack 
when axial crack 
length is 92mm 

• Failure when the 
through crack length 
is 107mm 
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Example: Leak before break 

• This example considers a 
crack in a pressurised 
header nozzle connection 
– Response to a pressurised 

thermal shock 

– Crack growth 

• The quarter symmetry 
model has the following 
main dimensions 
– Header 

• OD 30”, wall 31/8” 

– Nozzle 
• OD 105/8”, wall 15/16” 

 

Crack position Crack position 
shown on 
uncracked mesh 
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Example: Leak before break 

• Temperature dependent steel 
data 

• The transient analysis is carried out 
as a sequential thermal-stress 
analysis: 
– Heat transfer run to develop 

temperature distribution as a function 
of time 

– Stress analysis using the heat transfer 
results as one of the inputs, plus 
pressure loading 

 

*Material, name=Steel 

*Conductivity 

 0.0518, 20. 

 0.0503,100. 

 0.0476,200. 

 0.0445,300. 

 0.0414,400. 

*Density 

 7.85e-06, 

*Elastic 

209000., 0.3, 20. 

205000., 0.3,100. 

199000., 0.3,200. 

191000., 0.3,300. 

181000., 0.3,400. 

*Expansion, zero=20. 

 1.15e-05, 20. 

 1.17e-05, 50. 

  1.2e-05,100. 

 1.23e-05,150. 

 1.27e-05,200. 

  1.3e-05,250. 

 1.33e-05,300. 

 1.35e-05,350. 

 1.38e-05,400. 

*Specific Heat 

460., 20. 

480., 50. 

500.,100. 

520.,150. 

530.,200. 

540.,250. 

560.,300. 

570.,350. 

590.,400. 
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Transient definition 

• Transient definition for pressurised thermal 

shock 
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• Internal temperature is defined in the 
heat transfer analysis using an Abaqus 
*AMPLITUDE definition. 

• Internal and end cap pressures are 
defined during the stress analysis 
using an Abaqus *AMPLITUDE definition. 

• Pressure load is also applied on the crack face. 
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Cracked model transient analysis 

Temperature 

Von Mises stress 

Animations on this slide are not included in the pdf version 
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Temperature history 
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Ki history 
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Crack growth 

• Range of DK 

through the 

transient is 

extracted for each 

crack front node 

• Integration 

scheme advances 

each node over 

the next N load 

cycles 

Animations on this slide are not included in the pdf version 
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Example: Shot peening 

• Shot peening produces a compressive 

residual stress layer at the surface of metallic 

components and a sub-surface tensile stress 

– Surface is impacted with shot (round metallic, 

glass or ceramic particles) with sufficient force to 

generate plastic deformation 

– the compressive stress provides 

resistance to fatigue crack 

development 

– shot peening can increase fatigue 

life by up to1000% 
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Example: Shot peening 

• Often used in aircraft 
structures and engine disk 
and blade components 

• Inclusion of the effect of the 
shot peening process can 
have a considerable effect 
on a crack growth simulation 

• This is demonstrated by a 
simple example 

Blade assembly 

Typical treated 
components 
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Effect of residual stress on growth 

Typical residual stress distribution for titanium alloy from shot peening
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number of load cycles. 
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No surface treatment. 

External load at R=0.75 

With residual stress induced 

from shot peening. 

External load at R=0.75 
 

Effect of residual stress on growth 
Treated surface 

For this load cases there is a 

small change in crack 

shape development 

during initial stage of growth 

when residual stress is included 
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For R=0.75 the 

residual stress 

increases life 

by a factor of >1.9 

Effect of residual stress on growth 
With surface treatment 

life is approx. 17500 cycles 

Without surface treatment 

life is approx. 9200 cycles 
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Effect of residual stress on growth 

No surface treatment. 

External load at R=0.0 

With residual stress induced 

from shot peening. 

External load at R=0.0 

 

Treated surface 

For this load cases there is a  

considerable difference in 

shape development during 

growth when residual stress 

is included - significantly 

less growth at the 

treated surface 
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R=0.0
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Example: Parametric studies 

• SEN specimen with 

a hole in 4-point 

bending 

• Determine effect of 

hole on crack path 

Reference data: 

“Fatigue life and crack path predictions in generic 

2D structural components” 

A.C.O. Miranda, M.A. Meggiolaro, J.T.P. Castro, L.F. Martha, T.N. 

Bittencourt, Eng. Frac. Mechanics 70 (2003) 1259-1279. 

Reference prediction 

F.E. prediction 
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Example: Parametric studies 

Animations on this slide are not included in the pdf version 
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Example: Parametric studies 
First analysis 

Second analysis: 

initial crack moved a 

small amount to the 

right 

Animations on this slide are not included in the pdf version 
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Example: Complex contact 

• Geometry is a coarse (UNC) 0.5 inch major 

diameter thread 

• In terms of the definitions below: 

– Major diameter 

• Dmaj=0.5" 

– Pitch 

• P=1/13“ 

• i.e. 13 threads 

per inch 

 

http://en.wikipedia.org/wiki/Unified_Thread_Standard 
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Example: Complex contact 

• Simplified model 

– no circumferential effect of pitch 

– crack extending around the full circumference 



www.nafems.org 

Example: Complex contact 

• Displacement constraints applied to load 

the component 

• Constant amplitude fatigue cycle 

– zero-to-maximum load 

Displacement magnitude at max. load Von mises stress at max. load 
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Crack position 

Initial crack location 

Crack position is based on maximum principal stress 

this occurs off-centre at the root of the first contacting thread. 



www.nafems.org 

Initial crack 

The initial crack on an undeformed mesh plot 
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Load cycle for one crack position 
Von mises stress, deformation x8 (through a load cycle) 

Animations on this slide are not included in the pdf version 
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Crack growth 
Von mises stress as the crack advances, deformation x8 (at max. load) 

Animations on this slide are not included in the pdf version 
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Crack growth 
deformation x8 (at max. load) 

Animations on this slide are not included in the pdf version 
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Example: Aero engine 

thermo-mechanical fatigue 

• In addition to geometry 
issues, the loading at a 
blade/disk interface is 
complex: 
– Rotation forces 

– Blade aerofoil loads 

– Friction 

– Temperature distribution 

– Variation of loads and 
temperatures through a flight 
cycle 

• In addition, for modelling 
purposes, displacement 
boundary conditions can be 
applied to represent 
adjacent structure 
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Model data 

• Time and spatial temperature distribution 

• Time varying loads 

 

Spatial temperature distribution: 
Failure analysis of turbine disc of an aero engine 

Witek 
Engineering Failure Analysis, 13 (2006) 9-17 
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Animations on this slide are not included in the pdf version 
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Model data 

• Temperature dependent material data and 

crack growth laws 

– Walker law, da/dn 

– COMET* equation for 

time dependent 

crack growth, da/dt 

• Fatigue calculations 

use the “mean rate” 

method: 

* COMET crack growth law reference: 
A Time Dependent Crack Growth Law for High Temperature Conditions 
 R. Chandwani, C. Timbrell (Zentech Int.Ltd.); D.W. MacLachlan, S.J. Williams (Rolls-Royce plc) 
NAFEMS European Conference: Multiphysics Simulation 2012 
16-17 October 2012, Frankfurt, Germany  
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Model data 

• Two contact pairs 
are defined 
between the 
blade and disk 

 

 

 

 

• Effects not included in this simplified model but 
which can be included if required are: 
– No blade aerofoil loading is defined 

– No non-zero applied boundary displacements have been 
defined in this model 
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Load cycle analysis 

• A “full cycle” capability performs combined 

fatigue and time dependent crack growth 

– Load and temperature 

variations modelled in 

a multi-increment finite 

element analysis 

– Results extracted from 

each increment 

– Gives time history and 

rainflow counted 

fatigue cycles 

Example: 

Extracted K vs time and the counted cycle positions 

(four fatigue cycles within the overall load sequence) 
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Detailed output 
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Through crack example 

Animations on this slide are not included in the pdf version 
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Through crack example 

Mid node = crack position 
half way through 
the disk thickness 

Fatigue Fatigue & time 

Including the effect of time dependent 

crack growth shows a reduction of 

approximately 25% in the life 

Animations on this slide are not included in the pdf version 
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Example: Combining fracture 

mechanics with an SN approach 

• Aim: Develop inspection regime 
– For an observed crack size the remaining life can 

be estimated from a calibrated model 

• With reference to BS7910 for welded joints: 
– Calibrate a model to fit a selected quality 

category SN curve 
• Estimate an initial crack 

size to achieve the life 
stated by the curve for 
a range of load levels 

• May require modification 
of Paris coefficients 

 

54 

SN curve from code 

Calibrated results 
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Summary 

• The physical mechanism for fatigue is divided 
into two stages 
– Life to crack initiation 

– Life to propagate crack to failure 

• Analysis method are also split into two stages 
– “Traditional” fatigue 

– Fracture mechanics based assessment 

• A complete fatigue prediction could therefore 
use a combination of both methods: 
– Total Life =  Life to crack initiation + 

   Life to propagate crack to failure 
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